Electrophysiological Rotor Ablation in In-Silico Modeling of Atrial Fibrillation: Comparisons with Dominant Frequency, Shannon Entropy, and Phase Singularity
نویسندگان
چکیده
BACKGROUND Although rotors have been considered among the drivers of atrial fibrillation (AF), the rotor definition is inconsistent. We evaluated the nature of rotors in 2D and 3D in- silico models of persistent AF (PeAF) by analyzing phase singularity (PS), dominant frequency (DF), Shannon entropy (ShEn), and complex fractionated atrial electrogram cycle length (CFAE-CL) and their ablation. METHODS Mother rotor was spatiotemporally defined as stationary reentries with a meandering tip remaining within half the wavelength and lasting longer than 5 s. We generated 2D- and 3D-maps of the PS, DF, ShEn, and CFAE-CL during AF. The spatial correlations and ablation outcomes targeting each parameter were analyzed. RESULTS 1. In the 2D PeAF model, we observed a mother rotor that matched relatively well with DF (>9 Hz, 71.0%, p<0.001), ShEn (upper 2.5%, 33.2%, p<0.001), and CFAE-CL (lower 2.5%, 23.7%, p<0.001). 2. The 3D-PeAF model also showed mother rotors that had spatial correlations with DF (>5.5 Hz, 39.7%, p<0.001), ShEn (upper 8.5%, 15.1%, p <0.001), and CFAE (lower 8.5%, 8.0%, p = 0.002). 3. In both the 2D and 3D models, virtual ablation targeting the upper 5% of the DF terminated AF within 20 s, but not the ablations based on long-lasting PS, high ShEn area, or lower CFAE-CL area. CONCLUSION Mother rotors were observed in both 2D and 3D human AF models. Rotor locations were well represented by DF, and their virtual ablation altered wave dynamics and terminated AF.
منابع مشابه
Effectiveness of atrial fibrillation rotor ablation is dependent on conduction velocity: An in-silico 3-dimensional modeling study
BACKGROUND We previously reported that stable rotors are observed in in-silico human atrial fibrillation (AF) models, and are well represented by a dominant frequency (DF). In the current study, we hypothesized that the outcome of DF ablation is affected by conduction velocity (CV) conditions and examined this hypothesis using in-silico 3D-AF modeling. METHODS We integrated 3D CT images of le...
متن کاملEffects Of Fast Pathway Ablation On The Concealment Zone And Electrophysiological Behavior Of AV-Node During Atrial Fibrillation.
Objectives: Dual pathways have a determinant role in the occurrence of atrio nodal tachyarrhythmia (AVNRT). The aim of present study is to determine the role of slow pathway (SP) in the concealment zone and protective role of AV node during atrial fibrillation (AF). Material &Methods: In 7 isolated nodal rabbit preparation zone of concealment and concealed conduction is quantified by Specif...
متن کاملQuantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation.
BACKGROUND New approaches to ablation of atrial fibrillation (AF) include focal impulse and rotor modulation (FIRM) mapping, and initial results reported with this technique have been favorable. We sought to independently evaluate the approach by analyzing quantitative characteristics of atrial electrograms used to identify rotors and describe acute procedural outcomes of FIRM-guided ablation. ...
متن کاملNew manifestations of electrophysiological remodeling of heart during experimental model of atrial fibrillation in cirrhotic rat isolated heart
Introduction: The present study is aimed to evaluate electrophysiological remodeling of atrioventricular (AV) node and ventricular conduction during experimental atrial fibrillation (AF) model in isolated heart of cirrhotic rats. Methods: Cirrhosis-induced electrophysiological remodeling was evaluated in 24 isolated retrogradely perfused rat hearts in 2 groups (control and cirrhotic). Cirrho...
متن کاملPro-arrhythmogenic effects of heterogeneous tissue curvature: Role of left atrial appendage in atrial fibrillation
Aims The arrhythmogenic role of atrial complex morphology such as left atrial appendage (LAA) has not yet been clearly elucidated. We hypothesized that bumpy tissue geometry can induce action potential duration (APD) dispersion and wavebreak in atrial fibrillation (AF). Methods We simulated 2D-bumpy atrial model by varying the degree of bumpiness and 3D-left atrial (LA) model of 14 patients wit...
متن کامل